If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+30x=264
We move all terms to the left:
4x^2+30x-(264)=0
a = 4; b = 30; c = -264;
Δ = b2-4ac
Δ = 302-4·4·(-264)
Δ = 5124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5124}=\sqrt{4*1281}=\sqrt{4}*\sqrt{1281}=2\sqrt{1281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{1281}}{2*4}=\frac{-30-2\sqrt{1281}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{1281}}{2*4}=\frac{-30+2\sqrt{1281}}{8} $
| 2(a+2)+3a=2(a+1)+1 | | 2(3x-2)+1=3(x-1)+3x | | -2/5+4a=-6/5 | | -35+3m=-60 | | 3(w-5)=7w+5 | | 1/2(6x-9)+x=4x+91/12 | | 6t−10=8t | | 4^-×=8^2x+6 | | -2(5.25+6x)=4(-3.1x+2.68) | | .5(12x-16)+3+x=3x+20 | | 8x+-9=4x-9 | | 7d+6=-9d-7+15d | | 4x–3(x–2)=2(3x–2) | | 8j+4=9j | | 1-6k-3k=-2k+8 | | 18n=-4 | | 6x+5=2x=9 | | 3/5n-7=-36 | | 6x=5=2x=9 | | -5+2g=5+g | | 6b+8=-10b-8 | | -9k=-k−8k | | 9u=-5+10u | | 0.4-0.7=0.2x+0.3 | | 18n=-10 | | 10^(-3x)=4 | | 8r-8=10r | | 0.1x+0.2=0.3+0.4 | | 175m-75m+53350=56100-175m | | 9x+16=90 | | 0.5x+1.1=0.25x+1.6 | | 16p+8p=8p+1 |